You are here


Synthesis and Characterization of Gold Nanostars as Filler of Tunneling Conductive Polymer Composites

Highly multibranched gold nanostars were obtained by a room-temperature synthesis assisted by deep-eutectic solvents (DES). The concentration of the ascorbate ions and the presence of water in the solution were found to both have a profound influence on branch formation. A growth mechanism of the nanostar is therefore proposed from the analysis of the particle dimensions, the aspect ratio of their protuberances, and the gold crystal size. These spiky nanoparticles would find an application as conductive filler in polymeric piezoresistive composites, based on a tunneling conduction mechanism.

Transparent YAG obtained by spark plasma sintering of co-precipitated powder. Influence of dispersion route and sintering parameters on optical and microstructural characteristics

A fine-grained (330 nm) yttrium aluminium garnet (YAG) ceramic, presenting a non-negligible transparency (66% RIT at 600 nm), was obtained by spark plasma sintering. The YAG powder was manufactured by co-precipitation, starting from a yttrium and aluminium chlorides solution. A soft precursor was obtained, whose phase evolution was studied by X-ray diffraction. Calcined powders were dispersed by either ball milling or by ultrasonication and then subjected to spark plasma sintering at several temperatures (1200–1400 °C) and for a reduced time (15 min).

Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites

Calcium phosphate-based materials should show excellent bone-bonding and cell-mediated resorption characteristics at the same time, in order to be employed for bone replacement. In this perspective, pure (HAp) and silicon-substituted hydroxyapatite (Si-HAp, 1.4% wt) porous cylinders were prepared starting from synthesized powders and polyethylene spheres used as porogens, and investigated as supports for osteoblast and osteoclast progenitor differentiation.

Creep behaviour of alumina/YAG composites prepared by different sintering routes

Al2O3–5 vol.% Y3Al5O12 (YAG) composite powders have been prepared by surface doping of α-alumina powders by an yttrium chloride aqueous solution. Two commercial, one submicron-sized, the other ultra-fine, alumina powders were compared as matrix materials. YAG phase was yielded by an in situ reaction promoted by the subsequent thermal treatment of the doped powders.

Sol–gel derived 45S5 bioglass: synthesis, microstructural evolution and thermal behaviour

In this work, the 45S5 bioactive glass was synthesized through an aqueous sol–gel method. Characteristic functional groups were evidenced by Fourier transform infrared spectroscopy, the thermal behaviour was investigated by thermogravimetric and differential thermal analysis, crystallization kinetics and phase evolution were followed by X-ray diffraction measurements. The sintering behaviour of the sol–gel derived 45S5 was then studied by dilatometry and the microstructural evolution was followed step-by-step, interrupting the thermal cycle at different temperatures.

Nanostructured Materials for Sensing

Materials having nanometric dimensions are able to improve their functional properties, which allow their exploitation in highly performing sensors. Materials with at least one dimension smaller than 100 nm are classified as nanostructured.

Mechanical properties of porous ceramics in compression: On the transition between elastic, brittle, and cellular behavior

This paper deals with the uniaxial compression behavior of porous ceramics within a wide range of porosity, varying from 30 to 75 vol%. The load–displacement curves recorded on porous alumina samples showed a transition between a typical brittle behavior at porosity fractions below 60 vol% and a damageable, cellular-like behavior, at higher porosity fractions. This transition in fracture mode was confirmed by in situ compression tests in an X-ray tomograph.

Elaboration and mechanical characterization of multi-phase alumina-based ultra-fine composites

Al2O3-10 vol.% YAG and Al2O3-10 vol.% ZrO2 bi-phase composites as well as Al2O3-5 vol.% YAG-5 vol.% ZrO2 tri-phase composite were developed by controlled surface modification of an alumina powder with inorganic precursors of the second phases. Green bodies were produced by dry pressing and slip casting and then sintered at 1500 °C. In particular, slip casting led to fully dense, defect-free, and highly homogenous samples, made of a fine dispersion of the second phases into the micronic alumina matrix, as observed by SEM.

Comprehensive Characterization of Large Piezoresistive Variation of Ni-PDMS Composites

This work presents a comprehensive investigation of the piezoresistive response of a metal-polymer composite for robotic tactile sensor application. Composite samples, based on nickel nanostructured conductive filler in a polydimetihylsiloxane (PDMS) insulating elastomeric matrix, were prepared changing several process parameters like thickness, composition of the polymer and nickel filler content. A variation of electric resistance up to nine orders of magnitude under applied uniaxial load was measured in the fabricated samples.

Wear Behavior of Fiber Laser Textured TiN Coatings in a Heavy Loaded Sliding Regime

In heavy loaded mating components, such as sliders and sliding bearings, guaranteeing the efficiency of lubricant films for long times during severe service conditions is very complicated. In this work, the benefits deriving from the use of fiber laser sources for surface texturing of very thin TiN coatings in severe wear working conditions were demonstrated. Evaluations of the laser textured dimples shape, geometry and density are given. Wear performance of the fiber laser textured surfaces was evaluated in discontinuous oil lubricated conditions with a flat contact.