FP7 Project on Multifunctional Reusable Components for Atmospheric Re-entry “SMARTEES”: Project Kick-off

J. Barcena¹, C. Badini², S. Gianella³, V. Liedtke⁴, K. Mergia⁵, A. Ortona⁶ and C. Wilhelmi⁷

¹Tecnalia (Spain), ²Politecnico di Torino (Italy), ³Erbicol (Switzerland), ⁴Aerospace & Advanced Composites (Austria), ⁵National Center for Scientific Research “Demokritos” (Greece) ⁶SUPSI (Switzerland), ⁷EADS (Germany)

3rd INTERNATIONAL ARA DAYS CONFERENCE
OUTLINE

- TECNALIA INTRODUCTION
- MOTIVATION OF THE WORK
- FP7 CALL & PROPOSAL EVALUATION RESULTS
- CONSORTIUM
- CONCEPT OF THE PROJECT
- OBJECTIVES
- WORKPACKAGES
- SCHEDULE
We are the leading private R+D+i entity in Spain and the fifth largest in Europe, with a staff of over 1,400 and a annual turnover of approximately 121 million Euros.

A unique commitment, an opportunity, a challenge
Tecnalia means people

1,437 Staff members

26 Workshops / Laboratories

3,796 Clients

164 PhDs
Creating ideas, creating wealth

53 patents filed
11 granted
3 licenced

1M € income from licences
Share participation in 31 NTBCs.
TECNALIA manages an office to support companies with their European and International projects (OPEI).

Tecnalia is Spain’s leading private entity in terms of FP7 income.

150 Projects approved

24 Projects led

44 million Euros in total income
Organised in Business Units.

We structure our experience and technical specialisation according to the markets where we operate in order to be as effective and proactive as possible.
SMARTEES
ARA DAYS – PROJECT KICK-OFF
02-05-2011 / 8

SUSTAINABLE DEVELOPMENT
Construction
Energy
Environment

INDUSTRY AND TRANSPORT
Casting and Iron & Steel
Industrial Systems
Transport

INNOVATION AND SOCIETY
Innovation Systems

ICT / EUROPEAN SOFTWARE INSTITUTE
Media
Information and Interaction Systems
Information Society
Software System Engineering
Telecom

HEALTH AND QUALITY OF LIFE
Feeding
Quality of Life
Pharma
Health
TRANSPORT UNIT: Facts and Figures

Who we are

Sectorial Business Unit of TECNALIA focusing its Technological Development and Services Offer to Meet the Main Demands of the Transport Sectors.

What we do

Complete Product and Manufacturing Processes Development to meet Customers’ Requirements with more Flexible, Robust and Integral Manufacturing Solutions.

Targeted Market Segments

- Automotive
- Aerospace
- Railway
- Shipbuilding
TRANSPORT UNIT: Location

DERIO. Forming
ZAMUDIO. Intelligent Manufacturing Systems
BOROA (Automotive Intelligence Centre). Electronic Products

SAN SEBASTIAN.
- Functional Materials & Powder Technology
- Plastics & Composites
- Product Engineering

IRUN. Pilot Plants
- Surface Engineering
- Casting
TRANSPORT UNIT: Facilities & Technological Areas. Functional Materials

SAN SEBASTIAN
Miramón Technology Park

Main Research Areas

- Thermal Management
- Materials for Extreme Environments
- Sensors and Actuators
- Space Electrical Propulsion
- Heating and Dielectric Heating
Hot Structures TPS Programs-projects

- IMC Hot Structures- RLV
- GammaTiAl testing FESTIP/X-38
- Smart TPS- EVEREST
- FLPP TPS & System engineering- RLV
- FLPP TPS & Hot Structures-RLV
- SHS Intermetallic Gamma TiAl –complex parts . A5 Vulcain turbine.
- EXPERT- IMC based TPS experiment on Reentry Capsule
- FLPP2-IXV smart tps intermetallic sandwich
- EXTREMAT CSIC-PM1000 integration
- Plansan materials vs PM2000. Development and characterization program. ESA TRP.
MOTIVATION OF THE WORK

- Future space transportation, equipped with re-usable components will greatly reduce the cost of launching a payload into space. This issue is of great importance, i.e. ESA technology strategy and long term plan 2009, clearly identifies the need of advanced TPS for space transportation and planetary entry, particularly framed on the Transportation and Human Exploration Preparation Programme (THEP).

Source: ESA - Ernst Presentation 2009
MOTIVATION OF THE WORK

- From the early 60s, the driving thermal protection systems (TPS) technology for earth re-entry was dominated by the US Space Shuttle. Similar dominating situation has been encountered for most of the planetary entry probes, aerocapture, and sample return missions to improve our understanding of the Solar System.

- Another motivation comes from the safety and reliability point of view: Columbia Space Shuttle (STS-107 mission) disaster and recent incidents during the STS-122 mission. The fundamental problem of the impact-sensitive heat shield has not been fixed.

Source: NASA, from Endeavour taken Aug. 12, 2007
MOTIVATION OF THE WORK

- Interest to create an **autonomous space thermal protection technology**, by reducing **the dependence** from the leading technologies from other countries. Ref: 2005 Executive summary “The Future of European Space Exploration”, regarding Securing European.

- Therefore, there is an **urgent need** to assure the **access to any technology** required to implement Europe’s space missions.
 - Other hurdles come from the ITAR restrictions that may create undesirable dependence.
 - The point is to ensure the capabilities to create an **independent supply chain** in the TPS components technology.
FP7 CALL & PROPOSAL EVALUATION RESULTS

- Proposal framed in the 3rd FP7 space call: SPA.2010.2.2-01 Space technologies – Thermal Components (including Smart TPS technologies for space applications).
- Projects on this call have a funding up to 2M Euro and have a 3 year duration.
- Ranking: 6 in its topic
- Final score: 13 points (of 15)
- Key dates:
 - First ideas and consortium completion: Summer 2010
 - Proposal submission: December 2010
 - Proposal evaluation: March 2010
 - Proposal Negotiation: May-July 2010
 - Grant Agreement: signed in December 2010
 - Project Kick-off: January 2011.
CONSORTIUM

CONSORTIUM MEMBERS LOCATION

The core group of SMARTEES project is composed of 7 public and private organisations coming from 6 different European countries: Spain, Italy, Greece, Switzerland, Germany and Austria.
CONSORTIUM

<table>
<thead>
<tr>
<th>#</th>
<th>Participant</th>
<th>Short Name</th>
<th>Country</th>
<th>Contact point</th>
<th>E-mail</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tecnalia Research & Innovation</td>
<td>TECNALIA</td>
<td>Spain</td>
<td>J. Barcena</td>
<td>jorgebarcena@tecnalia.es</td>
<td>Materials research centre</td>
</tr>
<tr>
<td>2</td>
<td>Politecnico di Torino</td>
<td>POLITO</td>
<td>Italy</td>
<td>C. Badini</td>
<td>claudio.badini@polito.it</td>
<td>University</td>
</tr>
<tr>
<td>3</td>
<td>Erbicol SA</td>
<td>ERBICOL</td>
<td>Switzerland</td>
<td>S. Gianella</td>
<td>sandro.gianella@erbicol.ch</td>
<td>SME, ceramic component supplier</td>
</tr>
<tr>
<td>4</td>
<td>National Center for Scientific Research “Demokritos”</td>
<td>NCSRD</td>
<td>Greece</td>
<td>K. Mergia</td>
<td>kmergia@ipta.demokritos.gr</td>
<td>National Research Centre (largest in Greece)</td>
</tr>
<tr>
<td>5</td>
<td>EADS Deutschland GmbH</td>
<td>EADS</td>
<td>Germany</td>
<td>C. Wilhelmi</td>
<td>christian.wilhelmi@eads.net</td>
<td>Industrial partner, space systems manufacturer, end user</td>
</tr>
<tr>
<td>6</td>
<td>Scuola Universitaria Professionale della Svizzera Italiana</td>
<td>SUPSI</td>
<td>Switzerland</td>
<td>A. Ortona</td>
<td>alberto.ortona@supsi.ch</td>
<td>University</td>
</tr>
<tr>
<td>7</td>
<td>Aerospace & Advanced Composites GmbH</td>
<td>AAC</td>
<td>Austria</td>
<td>V. Liedtke</td>
<td>volker.liedtke@aac-research.at</td>
<td>SME, material tester & qualifier</td>
</tr>
</tbody>
</table>
CONCEPT OF THE PROJECT

- SMARTERES address the development of advanced ceramic composites structures for reusable thermal protection systems. The solution will be based on a novel reusable TPS architecture which can withstand the extreme environment conditions during earth atmospheric re-entry.

- The concept of the project is based on the integration of conventional and non-conventional parts to create a sound TPS protection component with multifunctional properties (oxidation protection, emissivity, insulation,...). The design will incorporate the integration of materials at different levels:
 - Advanced protection layers to withstand high oxidative re-entry conditions
 - Ceramic composites and porous structures with high insulation capabilities (aided by material modelling)
 - Joining technologies to provide a full TPS solution (not only at hot-structure level).

- The space sector may take advantage of the novel reusable TPS technologies, since there is a high potential for its use in cargo and crew space return vehicles. I.e. for a cost effective, safe and reliable return from the international space station (ISS).
OBJECTIVES

The main objective is to develop a new reusable solution based on multifunctional concept with very high insulation and environmental protection capability during re-entry and the ability to reach a TRL level between 4 and 5 at the end of the project.

- From this premise it is planned to achieve the following technical targets:
 - Develop a concept with the ability to obtain multifunctional properties.
 - Suitable bonding adhesion among the different parts and materials to form the technology sample solutions.
 - Proof-of-technology sample concept to satisfy the needs of TPS end users.
 - Validate the technology sample in a ground testing, which simulates and reproduces with high accuracy the space re-entry.
 - Obtain a solution able to survive at least to 10 re-entries with minor repairs.
 - Reduced maintenance and failure probability during the re-entry, due to the minimisation of stand-offs and bolts by bonded joints.
 - Achieve a technology readiness level (TRL) between 4 and 5 after the complete testing of the technology sample.
WORKPACKAGES: LIST

The work plan is distributed among a total of 6 technical workpackages and 2 non-technical workpackages:

- WP1: Requirements and design.
- WP2: Materials development
- WP3: Joining processes.
- WP4: Simulation.
- WP5: TPS technology sample assembly.
- WP6: Ground testing and validation.
- WP7: Use and dissemination.
- WP8: Coordination and reporting.
WORKPACKAGES: STUDY LOGIC

WP1: TPS design

WP2: Materials development

WP3: Joining processes

WP4: Simulation

WP5: TPS Sample Assembly

WP6: Ground testing and validation

WP7: Use and dissemination

WP8: Coordination and reporting

- Proof TPS design
- TPS manufacture chain
- Mockup assembly
- Delivery for ground testing
- Validation process
WP1: TPS DESIGN

MISSION & ENVIRONMENTAL REQUIREMENTS

MATERIALS SELECTION AND SPECIFICATIONS

TPS DESIGN
WP1: TPS DESIGN

- Mission definition is on-going and several alternatives have been assessed.

- Once the mission is selected the following specifications will be collected:
 - Heatfluxes
 - Time (during peak & total)
 - Pressure profile
 - Mechanical load

- The next step is the definition of a preliminary TPS design:
 - Materials & structure levels
 - Shape and thicknesses
 - Joining definition
 - Stand-off attachments
WP2: MATERIALS DEVELOPMENT

- External protective layers based on UHTCs hot structures
 - Suitable for environments leading to a external surface temperature > 1700 °C.

- Integration of advanced CMC structures and ceramic foams.

- Definition of metallic materials: stand-offs and vehicle sub-structure

Qualified CMC structure from EADS

CMC-SiC sandwiches, (SUPSI, A. Ortona) made with ERBISIC ceramic foams (Erbicol S. Gianella)
WP3: JOINING PROCESSES

- Definition & selection of the bonding processes

- Execution of the bonding process
 - External hot-structure to CMC assembly
 - Assembly of stand-offs to the structure

- Thermo-mechanical characterization and high temperature oxidation testing
 - Thermal conductivity
 - Emissivity
 - Mechanical loads
 - Coefficient of thermal expansion
 - Cataliticity
WP4: MODELLING & SIMULATION

- Modeling of the different parts of the TPS (aided by computed tomography)

Credit: SUPSI (A. Ortona) made with ERBISIC ceramic foams (Erbicol S. Gianella)

- Thermo-mechanical analysis
 - Inputs for W1 (specifications), WP2 (materials) and WP3 (processes)
 - Definition of temperature distribution
 - The output of this work will help to calculate critical design parameters (WP1)
WP6: MODELING & SIMULATION

Ground testing for re-entry applications can be performed in different ways:

- **Plasma Windtunnels**
 - Close to reality
 - Costly; screening tests hardly justifiable

- **Standard Test Rigs (e.g. furnaces; mechanical test machines)**
 - Cheap, fast and easy; good for screening tests
 - Hardly relevant for re-entry applications

- **Specific thermo-mechanical test facilities**
 - Significant cost advantage to plasma windtunnels
 - More versatile, e.g. combination of T, F, p
 - Plasma-related thermochemical processes cannot be reproduced
 - Modern materials’ durability may exceed the durability of test rig components
WP6: MODELING & SIMULATION

- In a final stage the technology sample will be tested in a relevant ground facility simulating the re-entry conditions.
- The testing will determine the fundamental performance and the degradation mechanisms.
- This final step will give insight into the overall performance of the TPS, identify possible modes of failure, and assess the efficiency of the thermal insulation and the heat fluxes into the sub-structure of a spacecraft.
- The ground testing outputs will be reviewed in comparison with the outputs of TPS requirements and environment specifications.

Standard Test Rig (at AAC)

Credit: V. Liedtke (AAC)
WP7: DISSEMINATION ACTIVITIES

- Definition of exploitation plan
- Assessment of IP
- Dissemination plan: lectures in relevant conferences & peer review journals
- Use of social networks such as Linked-in.

Project webpage available soon

www.smartees-project.com
WP7: DISSEMINATION ACTIVITIES

SMARTIES is targeted at obtaining a novel "proof-of-reuseability" thermal protection system (TPS) concept with multifunctional properties, i.e. insulation and oxidation resistance. The TPS architecture will combine the use of advanced ceramic composites and porous structures.
SCHEDULE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WP1 1</td>
<td>Technology concept design and conceptualization</td>
<td></td>
</tr>
<tr>
<td>WP1 2</td>
<td>Detailed TRS system and proof-of-concept</td>
<td></td>
</tr>
<tr>
<td>WP1 3</td>
<td>Materials development and manufacturing</td>
<td></td>
</tr>
<tr>
<td>WP1 4</td>
<td>Materials – 1st level material (manufacture)</td>
<td></td>
</tr>
<tr>
<td>WP1 5</td>
<td>Materials – 2nd level materials (development and optimization)</td>
<td></td>
</tr>
<tr>
<td>WP1 6</td>
<td>Materials – 3rd level materials (manufacture and optimization)</td>
<td></td>
</tr>
<tr>
<td>WP1 7</td>
<td>Mechanical and thermal characterization of materials</td>
<td></td>
</tr>
<tr>
<td>WP1 8</td>
<td>Joining processes</td>
<td></td>
</tr>
<tr>
<td>WP1 9</td>
<td>Definition of bonding processes</td>
<td></td>
</tr>
<tr>
<td>WP1 10</td>
<td>Foil-based CMCs/Metal hybrid bonding</td>
<td></td>
</tr>
<tr>
<td>WP1 11</td>
<td>Thermo-mechanical characterization and high temperature applications</td>
<td></td>
</tr>
<tr>
<td>WP1 12</td>
<td>Simulations</td>
<td></td>
</tr>
<tr>
<td>WP1 13</td>
<td>Model reconstruction</td>
<td></td>
</tr>
<tr>
<td>WP1 14</td>
<td>Model simulation</td>
<td></td>
</tr>
<tr>
<td>WP1 15</td>
<td>Technology validation assembly</td>
<td></td>
</tr>
<tr>
<td>WP1 16</td>
<td>Materials development technology sample level</td>
<td></td>
</tr>
<tr>
<td>WP1 17</td>
<td>Joining processes technology sample level</td>
<td></td>
</tr>
<tr>
<td>WP1 18</td>
<td>Thermo-mechanical characterization of technology sample</td>
<td></td>
</tr>
<tr>
<td>WP1 19</td>
<td>Ground testing and validation</td>
<td></td>
</tr>
<tr>
<td>WP1 20</td>
<td>System direction technology testing</td>
<td></td>
</tr>
<tr>
<td>WP2 / WP3</td>
<td>Use and dissemination</td>
<td></td>
</tr>
<tr>
<td>WP2 1</td>
<td>Dissimilation activities plan</td>
<td></td>
</tr>
<tr>
<td>WP2 2</td>
<td>Use plan</td>
<td></td>
</tr>
<tr>
<td>WP2 3</td>
<td>Administration and reporting</td>
<td></td>
</tr>
<tr>
<td>WP2 4</td>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>WP2 5</td>
<td>Administration</td>
<td></td>
</tr>
</tbody>
</table>

4 Months
END OF PRESENTATION

Many thanks for your attention