### **ORAL REFERENCE OPO21**



# **Aging and Fatigue of Zirconia Oral Implants: An In Vitro Investigation**

Ralf Kohal<sup>1</sup> Laurent Gremillard<sup>2</sup> Laura Martin<sup>2</sup> Benedikt Spies<sup>1</sup> Jerome Chevalier<sup>2</sup>

<sup>1</sup>University of Freiburg, Department of Prosthodontics, Freiburg, Germany <sup>2</sup>Laboratoire MATEIS, UMR CNRS5510, INSA-Lyon, France







### **ORAL REFERENCE OPO21**

# Disclosure

This work is part of The LONGLIFE project that has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n°280741. The implants were kindly provided by VITA Zahnfabrik, business unit vitaclinical, Bad Säckingen, Germany.





### INTRODUCTION





- Y-TZP as possible replacement for titanium as oral implant material
- Ageing tendency of Y-TZP under hydrothermal influence (Deville et al. 2006)
- Mechanical stresses in addition may lead to further *t-m* transformation
- Zirconia oral implants are exposed to fluid, temperature & loading in the oral cavity (Kohal et al. 2012, 2013)



### INTRODUCTION











The aim of the in vitro (pilot) investigation was to evaluate the combined influence of hydrothermal and mechanical load on zirconia oral implants regarding the tetragonal-tomonoclinic phase transformation



### MATERIALS AND METHODS: Implants

- 1 implant remained as delivered with no hydrothermal and mechanical load
- 8 zirconia embedded into Technovit resin and mounted in a modified chewing simulator
- all 8 implants were exposed to 80 °C hot water:
  - ✓ 3 implants were not mechanically loaded but exposed to the hot water for either 166 h (= 1.2 million loading cycles), 694 h (= 5 million cycles), and 1388 (= 10 million loading cycles)
  - ✓ 3 implants were mechanically loaded with 100 N and exposed to the hot water for either 166 h (= 1.2 million loading cycles), 694 h (= 5 million cycles), and 1388 (= 10 million loading cycles)
  - 2 implants were mechanically loaded with 200 N and exposed to the hot water for either 166 h (= 1.2 million loading cycles),





### MATERIALS AND METHODS



### embedded implant sample



### artificial chewing simulator



### MATERIALS AND METHODS: X-ray diffraction

- XRD CuKα radiation (Bruker D8 Advance):
  - range  $(2\theta \in [27^{\circ} 33^{\circ}])$
  - scan speed 0.2°/min and step size 0.02°
- experimental volume content of monoclinic phase f determined with:

$$X_{m} = \frac{I_{m}(\overline{1}11) + I_{m}(111)}{I_{m}(\overline{1}11) + I_{m}(111) + I_{c}(111)} \qquad \qquad f_{m, XRD} = \frac{1.31}{1 + 0.3}$$

- tensile and compressive sides evaluated separately
- no statistical analysis due to the low number of samples





 $\frac{1X_{m,XRD}}{311X_{m,XRD}},$ 

Toraya et al. 1984

### MATERIALS AND METHODS: X-ray diffraction







### MATERIALS AND METHODS: X-ray diffraction







### RESULTS

- No implant fracture in the artificial mouth
- Monoclinic phase fraction of the different implants

| Load<br>in N | <u>Temperature</u><br>in ⁰C | Time     | <u>Tensile side</u> | Compressive<br>side |
|--------------|-----------------------------|----------|---------------------|---------------------|
|              |                             | cycles   | Mean %              | Mean %              |
| 0            | 0                           | 0        | 11.7                | 11.7                |
| 0            | 80                          | 1200000  | 20.3                | 27.2                |
| 0            | 80                          | 5000000  | 41.8                | 38.7                |
| 0            | 80                          | 10000000 | 67.2                | 75.3                |
| 100          | 80                          | 1200000  | 16.7                | 14.1                |
| 100          | 80                          | 5000000  | 38                  | 36.6                |
| 100          | 80                          | 10000000 | 53.4                | 47.2                |
| 200          | 80                          | 1200000  | 22.3                | 53                  |
| 200          | 80                          | 1200000  | 60.1                | 69.3                |





### RESULTS

- with increasing number of cycles (=time) monoclinic faction increased
- monoclinic phase fraction in non-loaded group higher than in the 100 N loaded group
- monoclinic phase fraction in non-loaded group lower than in the 200 N loaded group

|                |              |         |           |                 | 80 -             |   |
|----------------|--------------|---------|-----------|-----------------|------------------|---|
| Cycles         | Side         | Load 0N | Load 100N | Load 200N       | 70 -             |   |
| 0              | tens./compr. | 11,7    |           |                 | 60 -             |   |
| 1.2 mio        | tensile      | 20,3    | 16,7      | 22.3(a)/60.1(b) | - 00 -<br>- 04 - |   |
| 1.2 <u>mio</u> | compressive  | 27,2    | 14,1      | 53(a)/69.3(b)   | <b>n</b> 30 -    |   |
| 5 <u>mio</u>   | tensile      | 41,8    | 38        |                 | <u>-</u><br>20 - |   |
| 5 <u>mio</u>   | compressive  | 38,7    | 36,6      |                 | 10 4             |   |
| 10 <u>mio</u>  | tensile      | 67,2    | 53,4      |                 | 0 -              |   |
| 10 <u>mio</u>  | compressive  | 75,3    | 47,2      |                 |                  | J |







### DISCUSSION

- low number of specimens, non-statistical (pilot) character of investigation
- individual variations of implants in t-m transformation possible
- a low weight in addition to hydrothermal influence does not to seem to increase t-m transformation
- a longer exposure to hot water (cycles) increases t-m transformation (Chevalier et al. 2011, Keuper et al. 2013)
- the novel chewing machine seems to be appropriate for accelerated ageing of zirconia implants





### TEMPERATURE – TIME EQUIVALENCE for zirconia ageing

- evolution of monoclinic fraction with time:
- *b* varies with temperature as:
- same  $f_m$  at temperatures  $T_1$  and  $T_2$  if  $b_1t_1 = b_2t_2$ , or:

| Cycles | Time at 80 <sup>o</sup> C | Represents X<br>time at 37°C<br>(Ageing) |
|--------|---------------------------|------------------------------------------|
| 1.2 M  | 166 h                     | 2 years and 2<br>months                  |
| 5 M    | 694 h                     | 9 years                                  |
| 10 M   | 1388 h                    | 18 years                                 |
|        |                           |                                          |







### $f_m = 1 - \exp(-(bt)^n)$

 $b = b_0 \exp(-\frac{Q}{RT})$  $t_2 = t_1 \cdot \exp\left[-\frac{Q}{R}\left(\frac{1}{T1} - \frac{1}{T2}\right)\right]$ 

### CONCLUSION

- Exposure time to hydrothermal ageing seems to be the driving force for *t-m* transformation
- Loading may add to the transformation from a certain threshold on





# Thank you for your kind attention

# Aging and Fatigue of Zirconia Oral Implants: An In Vitro Investigation

Ralf Kohal<sup>1</sup> Laurent Gremillard<sup>2</sup> Laura Martin<sup>2</sup> Benedikt Spies<sup>1</sup> Jerome Chevalier<sup>2</sup>

<sup>1</sup>University of Freiburg, Department of Prosthodontics, Freiburg, Germany <sup>2</sup>Laboratoire MATEIS, UMR CNRS5510, INSA-Lyon, France



